
An Integrated OMNeT++Implementation of 802.11
A. Ariza-Quintana E. Casilari J. Hurtado-López

Dpto. Tecnología Electrónica, University of Málaga
Campus de Teatinos, 29071 Málaga (Spain),

Tfno.: 34-952132755; FAX 34-952131447

aarizaq@uma.es ecasilari@uma.es jhurtado@uma.es

ABSTRACT
This work presents a re-implementation of the 802.11 Wi-Fi
standard for the OMNeT++ inet framework and its forks. This
new implementation supports the versions 802.11a/b/g/p of the
IEEE 802.11 family of standards, as well as the extensions of
802.11e to provide Quality of Service (QoS). The software is
available at: https://github.com/aarizaq/inetmanet-2.0

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Frameworks, D.4.8
[Performance]: Simulation

General Terms
Algorithms, Experimentation, Standardization, Languages.

Keywords
Wi-Fi, 802.11, inet framework

1. INTRODUCTION
Inet- framework (and especially inetmanet fork) already includes
several transmission modes defined by the 802.11 standard [1].
However, these modes are implemented as separate models. This
obliges to replicate a high fraction of the programming code,
which is basically common for all the modes. Moreover, the
existence of separated modules increases the cost of the upgrading
and maintenance of the code, as far as any correction or updating
of one model has to be repeated for the rest. This diversity of
codes also complicates its use by inexpert or beginning
OMNeT++ programmers.

In order to avoid this inefficiency in the way 802.11 is
implemented, the corresponding code has to be restructured. We
have benefited from this re-organization of the code to add new
functionalities and correct some errors existing in the models.

As a prerequisite for the new code, we established that all the
different models should be structured in a single Wi-Fi model, so
the same code could support the different versions of the standard.

2. IMPLEMENTATION
To develop the new model, we based on the 802.11e/g [1] model
present in inetmanet and the Wi-Fi module available for NS-3
simulator [2], which in turn derives from the implementation
made for YANS [3] simulator. The integration of the new features

was performed following the documentation of the standard [1],

2.1 Radio Layer
The new model creates two new classes for the Radio Layer. The
first one (ModulationType) contains a structure which stores a set
of parameters describing the employed modulation (see Table 1).

Table 1. Utilized fields for the characterization of a
transmission mode
isMandatory It indicates if the mode is designed as

mandatory by the standard

bandwidth Bandwidth (in MHz) utilized by each
channel.

codeRate Number of encoded bits per symbol

dataRate Binary rate

phyRate Speed of the physical layer,
expressed in symbols per second

constellationSize Constellation size of the modulation
scheme

modulationClass Type of modulation

All the methods of the second class (WiFiModulationType) are
static so they can be accessed without creating an object of the
corresponding type. This class fills the fields of the
ModulationType class with the adequate values for the 802.11
modulation scheme and binary rate that are being employed by the
Wi-Fi communications. For example, the method
WifiModulationType::GetOfdmRate13_5MbpsBW5MHz returns
an object of the ModulationType class whose fields define an
OFDM modulation with a bit rate of 5 Mb/s and a 5 MHz channel
bandwidth. Aiming at easing the programming, we introduce a set
of methods called getMode80211x, where x indicates the
employed version of the standard (a,b,g or p). These methods
allow to generate a ModulationType object by automatically
fulfilling the corresponding fields with the adequate binary rate
for the chosen version.
The WiFiModulationType class also offers a series of classes that
enable the computation of the transmission time of the frames and
headers of the Physical Layer. The timing intervals SIFS and
DIFS between consecutive frames are also computed as a function
of the selected modulation.
The way in which the probability of suffering a bit error is
computed has also been modified. Now the occurrence of bit
errors can be decided depending on the data of a specific table.
This table could be based, for example, on empirical observations
of real transmission scenarios or, otherwise, on offline data
calculated with complex models, which are hard to implement
because of the computation time that they require.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTools 2012 March 19–23, Desenzano, Italy.
.

Alternatively the bit errors can be analytically estimated. For this
purpose we made use of the modulation error model of YANS [3]
simulator, also utilized by NS3 [2].

2.2 MAC Layer
By means of new channel access methods, such as the Enhanced
Distributed Channel Access (EDCA), IEEE 802.11e allows to
establish different traffic categories. These traffic categories are
intended to provide Quality of Service (QoS) by prioritizing
certain flows. To characterize this multi-category operation of the
MAC layer in OMNeT++, a std::vector template is employed for
every category. The structure stores all the parameters related to a
particular traffic category. Thus, the code can work with an
arbitrary number of categories.
When employing EDCA, the categorization of the traffic at the
MAC layer module requires to cancel the queues existing at the
management module of the Link Layer. Consequently, all the
frames received at this management module are immediately sent
to the MAC module, where packets will be classified and queued.

Figure 1. Insertion of the packets in the queue using priority
criteria
As soon as a 802.11 frame arrives at the MAC layer, a new
categorization module decides which category it belongs to.
A second classifier module is in charge of queuing the packet
within the corresponding queue of the selected category. In this
sense, every category can be assigned just a simple queue or a set
of queues (according to multi-queue priority system). For the first
case, to guarantee the priority of the management information, the
queues at the MAC layers are ordered so that the management
packets are located in the first positions of the queues. Figure 1
shows an example of the ordering criteria in the queues:
management packets are prioritized while multicast data frames
are served before any unicast data packet.
In addition, the performed implementation also presents the
possibility of utilizing a multi-queue classifier module (sketched
at figure 2) for each category. For every category, this module
creates an arbitrary number of sub-queues with priority
management. These sub-queues are divided into two subgroups.
The first subgroup is governed by a strict priority policy. Under
this policy, packets of a queue of a higher priority are always
transmitted before any packet present in a queue with a lower
precedence. By default, three strict-priority queues are created:
one (with the highest priority) to handle the management packets,
one for the multicast/broadcast frames and, finally, a low priority
queue for the rest.

Additionally, we have also implemented a second subgroup which
utilizes Weighted Round Robin to schedule the packet service of
the different queues.

Figure 2. Multi queue priority system

Both the categorizing and the classifier modules are programmed
independently of the MAC layer, so they can be adapted to a
particular QoS policy without altering the source code of the
MAC layer. For this purpose, both the categorizer and the
classifier modules inherit from a new virtual pure class
(IQoSClassifier). Thus, different classifier/categorizer modules
can be programmed. So, the criteria to categorize/classify traffic
can be easily modified in the input configuration parameters of the
MAC layer, just indicating the particular categorizer/classifier that
is going to be employed.
Another feature that has been incorporated is that user can
optionally configure the values of certain timing parameters (e.g.:
the SIFS interval, the Slot Time and the waiting time of the
Acknowledgment packets). If they are not user defined, they are
set to the default values defined by the standard for the particular
modulation that is being simulated.

3. FUTURE EXTENSIONS
The code is presently being extended to incorporate different
features. For example, the next version will incorporate the Block-
ACK mechanism. We also contemplate to include Weighted
Round Robin (WRR) as a new scheduling policy for the
management of queue. This will enable to prioritize a certain
traffic type within a particular class.

4. ACKNOWLEDGMENTS
This work was supported by Project No. TEC2009-13763-C02-
01/TCM

5. REFERENCES
[1] IEEE 802.11-2007 IEEE Standard for Information

technology—Telecommunications and information exchange
between systems—Local and metropolitan area networks—
Specific requirements—Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)

[2] Ns3. Network Simulator 3 http://www.nsnam.org/
[3] Yans - Yet Another Network Simulator

http://sourceforge.net/projects/yans-netsim/
[4] S. Keshav, Srinivasan, An Engineering Approach to

Computer Networking, Reading (USA), Addison-Wesley,
1997.

Unicast packet

Unicast packet

Multicast packet

Multicast packet

Management Packet

Management Packet

Multicast packet

Management packet

Strict priorities queues Weighted Round Robin queues

