Grupo DIANA

  • Increase font size
  • Default font size
  • Decrease font size

A Study on the Application of Convolutional Neural Networks to Fall Detection Evaluated with Multiple Public Datasets

Research Area: Year: 2020
Type of Publication: Article
Authors: Casilari Pérez, Eduardo; Lora-Rivera, Raúl; García-Lagos, Francisco
Journal: Sensors Volume: 20
Number: 5 Pages: 1466
Month: March
ISSN: 1424-8220
BibTex:
Abstract:
Due to the repercussion of falls on both the health and self-sufficiency of older people and on the financial sustainability of healthcare systems, the study of wearable fall detection systems (FDSs) has gained much attention during the last years. The core of a FDS is the algorithm that discriminates falls from conventional Activities of Daily Life (ADLs). This work presents and evaluates a convolutional deep neural network when it is applied to identify fall patterns based on the measurements collected by a transportable tri-axial accelerometer. In contrast with most works in the related literature, the evaluation is performed against a wide set of public data repositories containing the traces obtained from diverse groups of volunteers during the execution of ADLs and mimicked falls. Although the method can yield very good results when it is hyper-parameterized for a certain dataset, the global evaluation with the other repositories highlights the difficulty of extrapolating to other testbeds the network architecture that was configured and optimized for a particular dataset.

Copyright © 2020 Grupo DIANA. All Rights Reserved.

GRUPO DIANA | Dpto. Tecnología Electrónica | UNIVERSIDAD DE MÁLAGA
Campus de Teatinos| 29071 MÁLAGA | Tlf: +34 95 2131352 | FAX: +34 95 2131447